Tail Probabilities and Partial Moments for Quadratic Forms in Multivariate Generalized Hyperbolic Random Vectors
نویسنده
چکیده
Countless test statistics can be written as quadratic forms in certain random vectors, or ratios thereof. Consequently, their distribution has received considerable attention in the literature. Except for a few special cases, no closed-form expression for the cdf exists, and one resorts to numerical methods. Traditionally the problem is analyzed under the assumption of joint Gaussianity; the algorithm that is usually employed is that of Imhof (1961). The present manuscript generalizes this result to the case of multivariate generalized hyperbolic (MGHyp) random vectors. The MGHyp is a very flexible distribution which nests, among others, the multivariate t, Laplace, and variance gamma distributions. An expression for the first partial moment is also obtained, which plays a vital role in financial risk management. The proof involves a generalization of the classic inversion formula due to Gil-Pelaez (1951). Two applications are considered: first, the finite-sample distribution of the 2SLS estimator of a structural parameter. Second, the Value at Risk and Expected Shortfall of a quadratic portfolio with heavy-tailed risk factors.
منابع مشابه
Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables
In this paper, we obtain the upper exponential bounds for the tail probabilities of the quadratic forms for negatively dependent subgaussian random variables. In particular the law of iterated logarithm for quadratic forms of independent subgaussian random variables is generalized to the case of negatively dependent subgaussian random variables.
متن کاملHessian Stochastic Ordering in the Family of multivariate Generalized Hyperbolic Distributions and its Applications
In this paper, random vectors following the multivariate generalized hyperbolic (GH) distribution are compared using the hessian stochastic order. This family includes the classes of symmetric and asymmetric distributions by which different behaviors of kurtosis in skewed and heavy tail data can be captured. By considering some closed convex cones and their duals, we derive some necessary and s...
متن کاملIntegrative multivariate distribution models with generalized hyperbolic margins
Multivariate generalized hyperbolic distributions represent an attractive family of distributions (with exponentially decreasing tails) for multivariate data modelling. However, in a limited data environment, robust and fast estimation procedures are rare. In this paper we propose an alternative class of multivariate distributions (with exponentially decreasing tails) belonging to affine-linear...
متن کاملApproximating the Distributions of Singular Quadratic Expressions and their Ratios
Noncentral indefinite quadratic expressions in possibly non- singular normal vectors are represented in terms of the difference of two positive definite quadratic forms and an independently distributed linear combination of standard normal random variables. This result also ap- plies to quadratic forms in singular normal vectors for which no general representation is currently available. The ...
متن کاملMultivariate distribution models with generalized hyperbolic margins
Multivariate generalized hyperbolic distributions represent an attractive family of distributions (with exponentially decreasing tails) for multivariate data modelling. However, in a limited data environment, robust and fast estimation procedures are rare. In this paper we propose an alternative class of multivariate distributions (with exponentially decreasing tails) belonging to affine-linear...
متن کامل